PART 1

<u>DIRECTIONS</u>: For #1-3, use the following set of ordered pairs to answer the questions.

1. What is the domain?

2. What is the range?

3. Is this a relation a function (YES or NO)?

<u>DIRECTIONS</u>: For #4-5, use the following graphs to determine whether or not the relations are functions. Write **YES** or **NO** in the provided blanks.

4.

5.

<u>DIRECTIONS</u>: For #6-7, evaluate the following functions for the given values of x. Show all work.

6.
$$f(x) = |6x + 4|$$
; $f(-5)$

7.
$$f(x) = \frac{2}{7}x - 4$$
; $f(21)$

<u>DIRECTIONS</u>: For #8-10, evaluate the following functions for the given values of x. Show all work.

$$f(x) = x^2 + 1 \qquad g(x) = x - 4$$

8. f(g(5))

9. g(f(3))

10. f(f(4))

<u>DIRECTIONS</u>: For #11-13, state the domains for the following functions.

11.
$$f(x) = \frac{7}{(x-9)(x+3)}$$

12.
$$f(x) = \sqrt{3x+6}$$

13.

<u>DIRECTIONS</u>: For #14-15, write linear functions with the given slopes and function values.

14.
$$m = -2$$
, $f(0) = 4$

15.
$$m = \frac{3}{4}$$
, $f(12) = 5$

<u>DIRECTIONS</u>: For #16, write a linear function, f, using the given information. Show all work.

16.
$$f(2) = 5$$
, $f(6) = -7$

<u>DIRECTIONS</u>: For #17, you are provided two values of a linear function. Find the third value. Show all work

17.
$$f(1) = -1$$
, $f(8) = 3$; Find $f(28)$

<u>DIRECTIONS</u>: For #18-19, use linear functions to solve. Show all work. Remember to label your answers.

18. Garfield caters lasagna dinners for wedding receptions. He charges \$675 for 50 guests and \$1875 for 150 guests. How much will he charge for 400 guests?

·____

19. A load of 9 kg stretches a coil spring to a length of 63 cm, and a load of 15 kg stretches it to a length of 81 cm. Find the length of the spring when there is no load.

PART 2

<u>DIRECTIONS</u>: For #20-21, evaluate the following function for the given values of x. Show all work.

$$f(x) = \begin{cases} \frac{2}{3}x - 4, & \text{if } x \le 3\\ -x + 8, & \text{if } x > 3 \end{cases}$$

20. f(-9) **21.** f(6)

<u>DIRECTIONS</u>: For #22-27, match the piecewise functions with the correct graphs. Write the CAPITAL LETTERS of the correct graphs in the blanks.

22.
$$f(x) = \begin{cases} -2x + 2, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

25.
$$f(x) = \begin{cases} 2x + 2, & \text{if } x < -2 \\ x, & \text{if } x \ge -2 \end{cases}$$

23.
$$f(x) = \begin{cases} x+1, & \text{if } x \le 2\\ -2x-1, & \text{if } x > 2 \end{cases}$$

26.
$$f(x) = \begin{cases} 2x - 1, & \text{if } x \le 2\\ 4, & \text{if } x > 2 \end{cases}$$

24.
$$f(x) = \begin{cases} 4 & \text{if } x \le 0 \\ x - 1, & \text{if } x > 0 \end{cases}$$

27.
$$f(x) = \begin{cases} 2x + 3, & \text{if } x < 2\\ 2x - 3, & \text{if } x \ge 2 \end{cases}$$

Α

В

С

D

Ε

F

<u>DIRECTIONS</u>: For #28-29, graph the piecewise functions. Use a straightedge (such as a ruler) to make lines

28.
$$f(x) = \begin{cases} \frac{1}{2}x - 3, & \text{if } x < -4 \\ -\frac{1}{4}x + 2, & \text{if } x \ge -4 \end{cases}$$

29.
$$f(x) = \begin{cases} -\frac{1}{3}x, & \text{if } x < -3\\ 1, & \text{if } -3 \le x \le 4\\ -\frac{1}{2}x + 3, & \text{if } x > 4 \end{cases}$$

<u>DIRECTIONS</u>: For #30-31, write piecewise functions for the given graphs.

30

31

<u>DIRECTIONS</u>: For #32-35, use the following absolute value function to answer the questions and create a graph.

$$y = -\frac{2}{3}|x - 4| + 1$$

32. What point is the vertex?

33. Will the graph open UP or DOWN?

34. Will the graph be WIDER, NARROWER, or the SAME width as y = |x|?

35. Graph the function.

					П					
				denced						

<u>DIRECTIONS</u>: For #36-39, use the following absolute value function to answer the questions and create a graph.

$$y = 2|x+1| - 2$$

36. What point is the vertex?

- **37.** Will the graph open UP or DOWN?
- -----
- **38.** Will the graph be WIDER, NARROWER, or the SAME width as y = |x|?
- **39.** Graph the function.

HERE STREET	anner ann	SERVICE	and the same	2000000	Market	ancomo		-		omeniu		erenerene	0.00.70		
												50.50000000			
				28/40/80											

<u>DIRECTIONS</u>: For #40-41, write the absolute value functions shown on the graphs.

41. _____

